

THE MATHIS GROUP, INC.

A WOMAN-OWNED SMALL BUSINESS

USING ARTIFICIAL INTELLIGENCE TO ENABLE REAL-TIME KNOWLEDGE TRANSFER IN PROJECTS

Introduction

Knowledge transfer is critical to success; teams must transfer knowledge to both end-users and stakeholders. Projects involving remote clients and geographically dispersed team members must implement structured processes to verify the real-time capture and dissemination of project knowledge. These mechanisms equip stakeholders to make informed decisions based on the most current and relevant project information. Artificial intelligence (AI) now offers tools that go beyond traditional documentation by streamlining knowledge sharing and improving access to information. Many of these tools can streamline work for project managers while increasing communication and understanding for everyone involved in the project.

This paper examines the foundations of AI-enhanced knowledge transfer in project environments, analyzing the categories and mechanisms of project knowledge and evaluating the implications of high-dimensional vector space theories for scalable and efficient AI-driven knowledge sharing. By integrating contemporary research, theoretical frameworks, and comparative analysis, this study aims to provide a comprehensive understanding of how AI can enable real-time, adaptive, and context-sensitive knowledge transfer across the project lifecycle.

Foundations of AI-Enhanced Knowledge Transfer

Establishing the foundation for AI-enhanced knowledge transfer necessitates a clear understanding of the definition, limitations, and operational mechanisms of knowledge transfer, as well as the role of artificial intelligence in facilitating this process across the project lifecycle. Knowledge transfer is a process that consistently requires movement of information from the project team to users or customers, enabling them to maintain and operate the project once it enters the operational phase.

Defining Knowledge Transfer in the Project Context

Knowledge in project environments encompasses the systematic sharing and application of information, expertise, and insights among individuals and teams. Historically, knowledge transfer referred primarily to the dissemination of existing knowledge among project team members. In recent years, however, it has become more closely aligned with the transfer of knowledge from vendors and suppliers. Vendors often complete a project and subsequently transfer knowledge to onsite personnel within the client organization. This model of knowledge transfer has been widely critiqued due to perceptions among internal personnel that vendors often fail to provide comprehensive training or fully transmit essential project knowledge to all relevant stakeholders. Due to these complaints, organizations have implemented strict protocols to guide the knowledge transfer process.

Quarterly protocols for knowledge sharing and transfer delineate structured handoff procedures to promote seamless information exchange. These protocols support project phase transitions and personnel changes by incorporating detailed briefings, technical walk-throughs, formal documentation, and targeted question-and-answer sessions designed to ensure a comprehensive understanding of project functions and operations.

Lessons learned sessions typically document what worked, what did not, and how future efforts might benefit from alternative strategies. In the realm of Agile and Scrum, rather than a lessons learned session, the team holds a retrospective. This approach aligns with the norm of a lessons learned, where they examine what they did well and identify areas for improvement in future sprints. In both cases, lessons learned can be used as a training and teaching tool as well as a debrief for the organization.

To maintain project momentum and ensure success, teams must effectively transfer knowledge and skills to their successors. This transfer helps prevent knowledge silos and allows individuals to pass information on to peers who are handling that portion of responsibility, or to understand what the project does and does not do.

Integrating artificial intelligence into processes offers the potential to automate the extraction and organization of knowledge from diverse sources. AI can scan transcripts, emails, and training content to identify valuable knowledge and route it to authorized team members. By leveraging AI to transfer some of this knowledge, organizations can reduce the risk and accelerate the time it takes to transfer knowledge from one group to another.

AI's Role in Enhancing Knowledge Transfer

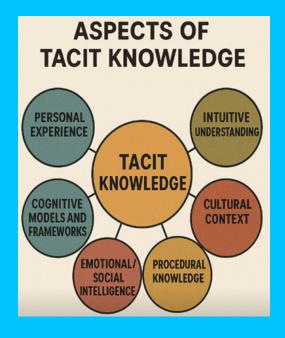
In AI-driven knowledge management systems, artificial intelligence can utilize algorithms to identify patterns and extract actionable insights from vast amounts of unstructured data. Given that organizations often lack robust data management practices, unstructured data constitutes one of the most substantial repositories of organizational knowledge. Artificial intelligence can analyze unstructured data and identify patterns that benefit the organization, facilitating both current and future decision-making. This analysis provides real-time feedback on the project, allowing for interaction and interactive training to ensure that critical knowledge is not overlooked. Artificial intelligence can structure that information in a way that makes it beneficial to share with others. It packages information into courses, memos, guides, presentations, and other resources that fill the gaps in their knowledge of a particular topic.

Categories of Project Knowledge: Tacit, Explicit, and Contextual

The three specific categories of project knowledge are tacit, explicit, and contextual. Each of these must be supported when transferring knowledge from the project team to the internal organization, and needs to have training that supports the initiatives.

Tacit knowledge reflects the lived expertise of subject matter experts, often shared informally with client teams during collaboration. It is generally not documented in books but rather exists in the experience and mindset of subject matter experts, playing a crucial role in the transfer of knowledge from these individuals.

Explicit knowledge encompasses codified, structured information such as project documentation, technical manuals, and formal training materials. It facilitates the efficient transfer of standardized content and supports users in resolving project-related challenges. Explicit knowledge refers to the information that is acquired and addressed in a course or research on a topic.


Contextual knowledge pertains to project-specific factors such as stakeholder preferences, organizational culture, and team dynamics, which are inherently difficult to formalize. Machine learning algorithms can detect patterns in project data to infer contextual variables, supporting more informed and nuanced decision-making. Because knowledge is shaped by context, AI's ability to analyze project histories and communication patterns enables the rapid capture of these subtle yet critical nuances, enhancing decision-making processes.

Tacit Knowledge

Tacit knowledge encompasses experiential insights, intuitive comprehension, and embodied expertise, often conveyed informally through mentoring, storytelling, and collaborative efforts. It comprises the following dimensions.

Intuitive Understanding

This refers to an instinctive grasp of processes and outcomes, typically developed through repeated exposure and practice. For example, this can include knowing when something is right or wrong without being able to articulate specific rules or processes.

Cultural Context

Through culture and contextual knowledge, a person understands the social norms, unwritten rules of organizational cultures, and subtle dynamics of how things get done in a specific environment.

Procedural Knowledge

Knowing how to do something, rather than just knowing what needs to be done, including the settled adjustments and adaptations, accounts for procedural knowledge experience. This type of knowledge is particularly valuable because it is difficult to replicate, making it a significant source of competitive advantage for individuals and organizations. It is often transferred through mentorship, apprenticeship, coaching, and collaborative work.

Emotional and Social Intelligence

Strong emotional intelligence is the ability to read situations, understand interpersonal dynamics, and navigate complex social interactions based on accumulated experience rather than explicit guidelines.

Cognitive Models and Frameworks

This is the mental framework people develop to make sense of their world, encompassing assumptions, public beliefs, and thought patterns that shape how they interpret and respond to situations.

Personal Experience

This understanding stems from having a deep involvement in activities, situations, or processes that cannot be easily documented or transferred through formal instruction. It includes physical and mental abilities that are learned through practice and embodied in action, such as riding a bicycle, playing a musical instrument, or recognizing patterns in complex data.

Traditional approaches to capturing tacit knowledge—such as after-action reviews and narrative accounts—are constrained by their dependence on human memory and the voluntary nature of knowledge disclosure. Due to the inherent fallibility of human memory, retrospectives often fail to capture the events of an organization accurately. The resulting discrepancies are typically unintentional, reflecting subjective recollection rather than deliberate misrepresentation.

Explicit Knowledge

Explicit knowledge refers to structured information one articulates, codifies, and stores, such as project plans, process manuals, and technical documentation. However, AI-powered search engines and knowledge bases enable rapid retrieval of relevant documents, thereby improving efficiency and reducing the cognitive load on team members. Because AI can work with explicit knowledge and codify, it helps in building concise training programs to reskill or upskill current employees, so they are well-prepared to address any project challenges after it has been handed off.

Explicit knowledge is typically what people think of when they think of knowledge transfer. However, in addition to explicit knowledge and the use of materials, the team also requires tacit knowledge to leverage the experience and knowledge base of subject matter experts. These experts help bring the books and materials from explicit knowledge to life, showcasing the variety of application areas.

Contextual Knowledge

Contextual knowledge refers to the background information and understanding that arise from knowing the specific situation in which a project is situated. This includes understanding the needs of different stakeholders, the organization's culture, and how the team collaborates. Stakeholders are individuals or groups that have a vested interest in the project's success, such as clients, managers, or community members. Organizational culture is the shared values, beliefs, and "unwritten rules" in a workplace that guide how people behave. Team dynamics refers to the way people in a group interact, communicate, and work together to solve problems.

This type of knowledge is often not documented in formal instruction. They are shaped by people's experiences, preferences, and relationships. Tools such as data analysis and machine learning can help identify patterns in project records, past communications, and performance reports. This can provide project managers with insights that help them make decisions tailored to the specific situation, rather than relying solely on general rules.

Key Areas of Contextual Knowledge

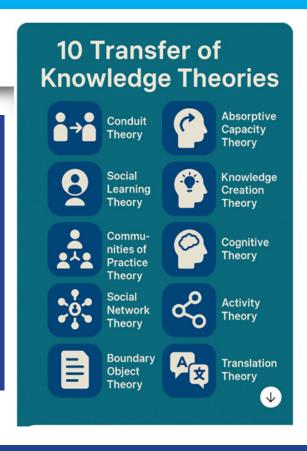
Stakeholder Priorities

Stakeholders' priorities often change over time due to shifts in the market, changes in company goals, or shifts in personal values. To keep up with these changes, project teams need to pay attention not only to official updates but also to more minor signals, such as recurring concerns in meetings or repeated feedback in emails. Identifying these patterns early allows the team to prepare for changes instead of being caught off guard.

Organizational Norms

Every organization has formal policies and informal ways of doing things. The informal side can include unspoken expectations, trusted decision-makers, and preferred communication styles. By understanding both the official and unofficial "rules," project leaders can present ideas in ways that align with the company's style, making it more likely that projects will receive support.

Team Interaction Patterns


The way team members talk, share ideas, and handle disagreements affects how well the project runs. By observing how often people speak in meetings, how quickly they respond to messages, and the overall tone of communication, leaders can determine whether morale is high or low. If problems are spotted early, workloads can be adjusted, conflicts can be addressed, and teamwork can stay strong.

Conclusion

With the foundational categories of project knowledge established and AI's role in facilitating their transfer demonstrated, the discussion now advances to a theoretical exploration of knowledge transmission frameworks. Understanding the principles and mechanisms underlying these knowledge transfer theories is essential for aligning AI capabilities with established knowledge-based constructs. Each theory offers distinct assumptions about how knowledge is created, shared, and internalized, thus serving as a lens through which the strengths and limitations of AI-mediated interventions can be critically assessed. By situating AI tools within these theoretical contexts, the analysis not only evaluates their functional alignment but also reveals opportunities for augmenting traditional practices through intelligent automation. This transition from conceptual underpinnings to theoretical models ensures methodological coherence. It facilitates a more nuanced understanding of how AI can support dynamic, context-sensitive knowledge transfer across complex project environments.

TEN THEORETICAL FRAMEWORKS FOR KNOWLEDGE TRANSFER

Many knowledge transfer theories share conceptual overlap as they predominantly focus on conveying existing knowledge to recipients who lack corresponding explicit or tacit understanding. Given that many individuals lack foundational knowledge of key knowledge transfer theories, identifying the associated challenges becomes critical. These include distinguishing between explicit and tacit knowledge, understanding the historical development of such frameworks, and articulating the value and context of their application. Furthermore, understanding the historical context begins to frame key questions that support shifting our understanding of knowledge transfer. This involves examining the value in making the case for why understanding these types of information is essential, and finally, looking at the context in setting expectations for how knowledge transfer theories can be organized and presented.

Conduit Theory

Conduit theory is examined as a framework that can be applied to knowledge that can be packaged, transmitted, and received through various channels. Information flows in connection, such as from a sender to a receiver. It is relatively simple to implement, cost-effective, efficient, and allows participants to evaluate the outcomes of knowledge transfer. Critics argue that the conduit theory oversimplifies the complexity of knowledge, neglects contextual interpretation, and inadequately address

conduit theory oversimplifies the complexity of knowledge, neglects contextual interpretation, and inadequately addresses the transmission of tacit knowledge. It overlooks the role of context and interpretation, is ineffective for transferring tacit knowledge, and assumes a passive recipient who absorbs information unchanged. It can be limited in considering cultural or social factors.

Example Tools & Practices:

- AI chatbots (e.g., ChatGPT, IBM Watson Assistant) to deliver step-by-step guidance or standard operating procedures.
- Automated document summarizers to condense dense materials for faster consumption.
- AI-based LMS systems (e.g., Docebo with AI) to distribute and assess understanding of structured content.

Practice Tip: Utilize AI to identify knowledge gaps in user queries and adjust the content delivered through the "conduit" accordingly.

Social Learning Theory

Social learning theory emphasizes the transfer of knowledge through observation and imitation in social interactions. People learn by observing and imitating others' behaviors while engaging in collaborative activities.

Social learning theory makes a valuable contribution by emphasizing the inherently social dimensions of knowledge acquisition. It underscores the significance of observational learning, role modeling, and collaborative interaction in shaping behavior and skill development. The theory incorporates role modeling, mentorship, and accounts for cultural and contextual factors while promoting active participation in the learning process.

A notable limitation of social learning theory lies in its dependence on physical proximity or shared experiential contexts, which can be time-intensive. In addition, the quality of the output depends heavily on the model and the mentor, as well as what the mentor is willing to share. Scaling this approach across a large organization can be challenging, particularly when it involves legacy biases and outdated practices embedded in the knowledge of individual mentors.

Example Tools & Practices:

- AI-powered video analysis (e.g., Rewatch, Synthesia) to create model demonstrations.
- AI-enhanced mentoring platforms (e.g., Together, MentorcliQ) that match mentors/mentees and track engagement.
- Digital twin simulations for role-playing in safe virtual environments.

Practice Tip: Utilize AI to track the uptake of modeled behavior and provide real-time feedback in collaborative environments.

Communities of Practice Theory

Community of practice theory naturally occurs within groups of people who share common interests, problems, and practices. These individuals learn through participation and involvement in various knowledge transfer situations.

The benefits of community of practice theory include creating sustainable learning environments that facilitate both explicit and tacit knowledge. It also fosters professional network relationships among individuals, encourages innovation through diverse perspectives on the topic, and sometimes develops a self-organizing, self-sustaining nature over time, which supports a cross-functional team very well.

A key limitation of community of practice theory is that it can become insulated and resistant to outside ideas. The idea that no one knows how to do this better than we do internally is a widespread negative experience. It is challenging to manage and direct from outside the group, as it sometimes fosters groupthink and stagnation, allowing bad ideas to be propagated and repeated. Additionally, uneven participation can occur among community members, where some team members assume all the responsibility while others take little to no responsibility.

Example Tools & Practices:

- AI-driven community platforms (e.g., Microsoft Viva, Yammer with Copilot) for surfacing trends and expertise.
- NLP-based sentiment and topic analysis to highlight active sub-communities and emerging knowledge.
- Knowledge graph tools (e.g., Neo4j + NLP) to map who knows what within a group.

Practice Tip: Use AI to encourage balanced participation by nudging low-engagement members or elevating underrepresented voices.

Social Network Theory

Social network theory focuses on the flow of knowledge through networks of relationships, with transfer patterns determined by the network structure, tie strength, and position within the network. Social capital and trust play crucial roles in knowledge sharing.

The benefits of social network theory include its recognition of the importance of relationships in knowledge transfer, its explanation of how informal networks complement formal structures, and its ability to identify key influencers and knowledge brokers. In addition, it accounts for trust and social capital in the transfer of knowledge, while providing tools for network analysis and optimization.

The negatives of social network theory include its potential for exclusivity and limited access to knowledge, as well as an overreliance on key individuals, which can create vulnerability. Strong ties may also limit exposure to new ideas, as maintaining the network requires ongoing investment and effort. Furthermore, power dynamics can distort the flow of knowledge.

Example Tools & Practices:

- Network analysis platforms (e.g., Polinode, NodeXL) enhanced by AI pattern detection.
- AI-powered CRM systems (e.g., Salesforce Einstein) to spot and strengthen informal knowledge channels.
- Relationship mapping AI for talent and expertise discovery.

Practice Tip: Regularly update AI-generated maps to monitor knowledge transfer vulnerabilities and proactively reallocate resources.

Boundary Object Theory

Boundary objective theory is facilitated through object concepts, which are practices that are flexible enough to adapt to local needs yet robust enough to maintain identity across different contexts. These boundary objects help bridge the various knowledge domains while supporting a clear understanding of the knowledge transfer.

The positive aspect of boundary object theory is that it enables translation across different knowledge domains, facilitating interdisciplinary collaboration and creating a shared understanding that requires consensus, while being scalable across various organizations with relational boundaries.

The drawbacks of boundary objective theory are that it necessitates the careful design and maintenance of boundary objectives, and it can lose precision or meaning through adaptation. Additionally, it can become a source of conflict due to poorly managed complexity issues involving numerous detail domains; success depends on all parties recognizing the value of the object.

Example Tools & Practices:

- AI-enabled co-design tools (e.g., Figma with AI, Miro AI) for creating adaptable knowledge artifacts.
- Language translation models (e.g., DeepL, Google Translate with AI) for cross-cultural adaptation.
- Semantic AI (e.g., Ontology Builders) to clarify object meaning across domains.

Practice Tip: Utilize AI feedback to refine boundary objects for clarity, coherence, and a shared understanding.

Absorptive Capacity Theory

Absorptive capacity theory is an organization's ability to recognize, assimilate, and apply external knowledge and learning capabilities. It suggests that effectiveness is determined by the recipient's capacity to absorb new information quickly.

The positive aspects of absorptive capacity theory emphasize the importance of an existing knowledge base, explaining why some transfers succeed while others fail. It can also highlight the need for investment in learning compact capabilities. This theory applies to both individual and organizational levels, supporting strategic planning for both knowledge initiatives.

A notable limitation of absorptive capacity theory lies in its potential to exacerbate disparities between high- and low-capacity units, particularly when prior knowledge becomes a prerequisite for participation. It requires significant and upfront investment in capacity building and may discourage radical innovation, or paradigm shifts within an organization, because some groups lack the necessary knowledge or information. Additionally, an assessment of absorbent capacity can be subjective and prone to bias due to the person's knowledge or lack thereof.

Example Tools & Practices:

- AI-driven adaptive learning platforms (e.g., Coursera's SkillSet, EdApp with AI) that customize paths.
- AI-based diagnostic tools to assess baseline knowledge and suggest personalized resources.
- Recommendation engines (e.g., LinkedIn Learning AI) for skill-building.

Practice Tip: Use predictive AI models to identify which individuals or teams are likely to succeed or struggle with knowledge absorption.

Knowledge Creation Theory

Knowledge creation theory describes knowledge transfer through specific models, such as socialization, externalization, combination (tacit to explicit and explicit to explicit), and internalization (explicit to tacit).

The positive aspects of knowledge creation theory are that it provides a comprehensive framework that encompasses various types of knowledge. It recognizes the dynamic nature of knowledge creation and emphasizes the importance of tacit knowledge while providing clear stages for knowledge management. It is applicable across different organizational contexts and supports a top-down level of knowledge transfer.

One challenge of absorptive capacity theory is that it can widen the gap between well-prepared and under-resourced teams, especially when foundational knowledge is required upfront. Cultural assumptions may not apply universally because culture varies depending on location and the people, and linear progression may not accurately reflect the real-world complexity associated with that topic. Furthermore, it is not easy to manage progress through the spiral in various organizational types.

Example Tools & Practices:

- AI transcription tools (e.g., Otter.ai, Fireflies) to externalize tacit knowledge during discussions.
- Concept combination tools (e.g., GPT-based synthesis engines) to recombine and reframe knowledge.
- AI-curated knowledge hubs (e.g., Notion AI, Guru) for organized internalization.

Practice Tip: Automate feedback loops that refine user questions and enhance AI-generated knowledge structures.

Cognitive Theory

Cognitive theory encompasses the mental processes of encoding, storing, and retrieving all knowledge. Success depends on how well information aligns with existing cognitive structures and schemes and how effectively it can be processed and integrated. Cognitive theory is critical because it explains the mechanisms through which knowledge is stored and retrieved within organizations, offering alignment with artificial intelligence capabilities to support a wide array of AI initiatives.

The benefits of cognitive theory are based on a solid understanding of human cognition, which explains individual differences in learning and retention, and provides insights into optimal presentation sequences and supporting evidence-based instructional design. Additionally, it accounts for cognitive load and processing limitations that may be involved in an organization.

The negatives of cognitive theory are that it focuses primarily on individual rather than social aspects and overemphasizes rational and analytical thinking. It can limit consideration of emotional or motivational factors and assumes universal cognitive processes across cultures. Some critics contend that cognitive theory may adopt an overly structural perspective, reducing the complexity of human cognition to rigid processes that inadequately reflect emotional, social, and cultural dimensions.

Example Tools & Practices:

- AI-powered instructional design (e.g., Canva Docs with AI, Articulate Rise + AI) for cognitive alignment.
- AI-based memory enhancers (e.g., Anki with GPT-generated flashcards).
- Cognitive load analysis via eye-tracking AI to streamline content presentation.

Practice Tip: Train AI to detect signs of overload and trigger microlearning modules or simplified versions of content to provide targeted support.

Activity Theory

Activity theory is embedded in activities and practices. Transfer occurs through participation in shared activities, with learning happening through engagement in meaningful work rather than abstract instruction. Activity theory is commonly used in interactive training to facilitate and transfer skills from the course of explicit information and data to individuals participating in short scenarios and situational activities.

The advantages of activity theory emphasize learning through authentic practice, integrating knowledge with action in a specific context. This approach can foster a deep understanding through application, while promoting collaboration, problem-solving, and effective communication with others. Additionally, it fosters confidence through legitimate participation.

Limitations of activity theory include the need for access to authentic practice environments, substantial time and resource investments, and the challenge of ensuring core competencies are addressed effectively. Additionally, it is time-intensive and resource-demanding to build. It must ensure that it is dealing with the right core competencies and then test it to verify that it teaches what one thinks it will teach.

It may not be suitable for all volunteer learners, and it is not easy to standardize for quality control. Additionally, success depends on the availability of expert practitioners willing to share their knowledge in these areas.

Example Tools & Practices:

- AI-driven simulation tools (e.g., Talespin, Second Life AI).
- Scenario builders (e.g., BranchTrack + GPT integration) for situational training.
- VR/AR AI platforms (e.g., Strivr, Oculus with AI tutors) to immerse users in knowledge-rich environments.

Practice Tip: Utilize AI to evaluate learner engagement, decision-making paths, and outcomes, thereby iterating and refining activities.

Translation Theory

Translation theory is a process of translation where knowledge is transformed as it moves between contexts. Rather than simple transmission, it involves interpretation, adaptation, and reconstruction of knowledge to fit new situations.

The positive aspects of translation theory are that it recognizes knowledge is contextually embedded, allowing for creative adaptation and innovation, and acknowledges the active role of the recipient. Additionally, it explains how knowledge evolves through transfer and supports the localization and customization of that knowledge.

The negatives of translation theory include the potential for significant drift from the original knowledge, difficul ties in maintaining quality control or standards, and the risk of fragmentation or inconsistencies in the knowledge base. Additionally, it requires skilled translators to serve as intermediaries, and success is highly dependent on the quality of the translation.

Example Tools & Practices:

- Context-aware AI translators (e.g., DeepL Pro, GPT-based localizers).
- AI rewriting tools (e.g., Jasper, Claude) to recast knowledge in learner-appropriate language.
- Cultural adaptation engines using AI ethnographic models.

Practice Tip: Incorporate feedback loops that enable users to refine AI-translated knowledge, thereby enhancing fidelity and relevance over time.

KNOWLEDGE TRANSFER THEORIES, DEFINITIONS, AND REFERENCES

Theory	Definition	Key Mechanisms	Peer-Reviewed Reference (APA + DOI/stable link)
Conduit Theory	Interprets knowledge transfer as a linear, literal pipeline; the sender packages and pushes information to the receiver. Critiqued for oversimplifying knowledge as mere information.	Document exchange, messaging, and explicit codification	Reddy, M. J. (1979). The conduit metaphor: A case of misplaced concreteness. Metaphor and Thought. In A. Ortony (Ed.). Cambridge University Press.
Social Learning Theory	Highlights that individuals learn through observation, imitation, and modeling within a social context.	Peer shadowing, team modeling, and video-based training	Bandura, A. (1977). Social Learning Theory. Englewood Cliffs, NJ: Prentice Hall.
Communities of Practice Theory (CoP)	Knowledge is created, shared, and internalized through active participation in groups that share a domain of interest.	Mentorship, social interaction, shared practice spaces	Lambiotte, R., & Panzarasa, P. (2009). Communities, knowledge creation, and information diffusion. arXiv preprint.
Social Network Theory	Emphasizes the role of interpersonal ties and network structures in facilitating or limiting the flow of knowledge. Brokers and central actors are critical hubs.	Social network analysis, informal networks, brokers	Ye, Y. (2020). Network dynamics of Chinese university knowledge transfer. Journal of Technology Transfer.
Boundary Object Theory	Focuses on shared a rtifacts or models that are flexible enough for interpretation across groups, yet sturdy enough to maintain identity across domains.	Visual models, shared documents, and prototypes	Carlile, P. R. (2004). Transferring, translating, and transforming: An integrative framework for managing knowledge across boundaries. Organization Science, 15(5), 555–568.

Absorptive Capacity Theory	A firm's ability to recognize, assimilate, transform, and exploit external knowledge depends on prior related knowledge and routines.	R&D investment, acquisition routines, assimilation workshops	Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152; Zahra, S. A., & George, G. (2002). Absorptive capacity: A review, reconceptualization, and extension. Academy of Management Review, 27(2), 185–203.
Knowledge Creation Theory (SECI)	Knowledge is created via a cycle of Socialization → Externalization → Combination → Internalization, enabling continuous conversiona between tacit and explicit knowledge.	Brainstorming sessions, knowledge repositories, and workshops	Nonaka, I., & Takeuchi, H. (1995). The Knowledge Creating Company. Oxford University Press.
Activity Theory	Originates from cultural-historical psychology. Explains knowledge transfer through the interaction of individuals (subjects) with their tools, community, and objectives within a specific context.	Mediating tools and artifacts, subject-object orientation, contradictions driving change, rules and community influence	Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14(1), 133–156.
Translation Theory	Views knowledge transfer as a dynamic process of negotiation where actors (human and non-human) continuously translate knowledge to fit their context.	Enrollment and mobilization of actors, inscription of knowledge into materials, problematization and negotiation	Latour, B. (1999). On recalling ANT. In J. Law & J. Hassard (Eds.), Actornetwork theory and after (pp. 15–25). Blackwell.

 \neg

Providing quality, customized training and consulting services that inspire, educate, and equip organizations to be better tomorrow than they are today.

DR. KEITH MATHIS, PMP, PMI-ACP, CSP-SM, CSP-PO WANDA MATHIS, M.ED. PMI-ACP

PROJECT MANAGEMENT TRAINING

OVER 60 PROJECT MANAGEMENT COURSES REGISTERED WITH PMI

PRESENTATIONS THAT EDUCATE, MOTIVATE, AND INSPIRE

Since 1993, The Mathis Group has been helping organizations change worker productivity and behavior.

PROJECT MANAGEMENT
MARKETING
MOTIVATION
ORGANIZATIONAL BEHAVIOR
LEADERSHIP
CUSTOMER SERVICE

COMPANY MANDATE

The Mathis Group provides training and consulting that will impact the organization and individual while maintaining an outstanding reputation for success and integrity.

VALUES STATEMENT

Every person has worth and should be treated with respect.

AREAS OF EXPERTISE

- Curriculum Design
- Project Management
- Organizational Behavior and Development
 - Management

- Agile Project Management
 - Strategic Planning
 - Executive Coaching
 - Performance
 - Team Building

- Emotional Intelligence
 - Leadership
 - Customer Service
- Supervisory Leadership
- Hybrid Project Management

9515 N Spring Valley Dr Pleasant Hope, MO 65725 800-224-3731 417-759-9110 (voice/fax)

www.themathisgroup.com

keith@themathisgroup.com wanda@themathisgroup.com DUNS Number: 007722098 CAGE: 3C1N9 GSA Contractor Number: GS-02F-0010V

