

THE MATHIS GROUP, INC.

A WOMAN-OWNED SMALL BUSINESS

NOVEMBER NEWSLETTER AI-DRIVEN RESOURCE ALLOCATION: EFFICIENCY OR OVERSIGHT?

SuperAGI, a customer relationship management organization, studied the impact of AI in scheduling. Their research indicates that organizations utilizing AI tools can rapidly reschedule tasks and adjust timelines in response to new inputs or changes, resulting in a 30% reduction in scheduling time for project managers compared to manual methods. (SuperAGI)

The primary goal of utilizing artificial intelligence in resource allocation is to make smarter, faster, and fairer decisions about how to use limited resources and anticipate potential bottlenecks and challenges more effectively. AI does not tire of overlooking details and is unbiased in its personal opinions, instead examining the facts associated with the project and providing suggestions based on data evidence and predictive expectations.

"AI systems can automate the generation of performance reports, reducing the administrative burden on project teams and improving the accuracy of reporting by eliminating human error." (Nabeel, 2024)

This month's newsletter will explain what resource allocation is and how AI works in increasing efficiencies when scheduling resources and reducing resource constraints. It will provide real-world examples and discuss options related to resource allocation, while also exploring alternative approaches to address specific situations and minimize resource utilization.

UNDERSTANDING RESOURCE ALLOCATION

Resource allocation involves various practices that differ across industries and organizations. The resources assigned to a project determine whether it is classified as a strategic priority or a supplementary effort addressing an immediate issue. Many organizations view resource allocation as a challenge, often due to operating with a skeleton crew. They rely on existing staff to fulfill additional responsibilities rather than hiring new personnel.

WHAT IS RESOURCE ALLOCATION?

Resource allocation involves the deployment of personnel, time, equipment, and budget to deliver a defined product, service, or outcome. The commitment of these resources directly contributes to achieving project goals and objectives.

It is the commitment to these items that drives and enables the completion of a goal or objective. Leadership determines where to allocate these resources and identifies the most essential items for them to focus on. Using that type of priority system makes a significant difference in how resources are allocated and what is delivered at the end of the day, the project, or the year. Because most

organizations' resources are typically limited, the prioritization that management places on yearly goals and objectives makes a difference.

Research in scientific project management reveals that traditional methods often suffer from resource misalignment and conflicts due to limited resources, including personnel, equipment, funds, and time. This often results in delays, budget overruns, and failure to meet project objectives. Approximately 20-30% of projects experience delays linked to improper resource allocation. (Dong, 2024)

Each goal and objective will require a specific project or allocation of resources to achieve its particular outcome. Because resources are committed to that goal and outcome, they are not working on other objectives that might be equally important or more critical.

Let us understand what specific resources are being committed to the project's goals and objectives.

Time – Time is associated with schedules, deadlines, and working hours.

People – People are the experts, subject matter experts, and individuals responsible for completing that work.

Equipment and Tools – Equipment and tools include machines, computers, vehicles, and any other necessary items required for project completion.

Money – The budget associated with these resources includes the cost of planning and the ongoing supply of various tools and equipment over time.

The goal in resource allocation is to utilize resources most effectively and efficiently, enabling the achievement of goals and objectives with the fewest resources. Some situations will work efficiently in this manner, while others will encounter unexpected bottlenecks, incur higher costs and longer timelines than anticipated.

TRADITIONAL METHODS OF RESOURCE ALLOCATION

The concept of resource allocation is not new, but the application of AI to assist in scheduling and alignment with a project's goal or organizational objective is novel. Before the advent of artificial intelligence, management or the project manager would typically schedule resources using various tools to anticipate how much work these individuals could accomplish on the project. Many would use basic software to allow the team to plan, track, and assign the resources working on each aspect of the project. Typically, people follow their subject matter expertise. For example, programmers would be assigned the programming details of the project, and construction would be assigned construction tasks. Each group would estimate the duration of time based on historical records from past projects. This type of resource allocation is referred to as analogous estimating. Analogous estimating involves making an analogy between the current project and the experience and history of past projects. Because this project is similar to a previous one, we can develop estimates that are anticipated to be within 10 to 15% of the earlier estimates.

While many methods based on historical data were effective in allocating project resources close to what was ultimately delivered, each had a significant weakness. Human decision-making does not encompass everything about the project. Therefore, individuals, when making decisions, are often limited in the amount of information they can analyze and process. In many cases, they can review 20 tasks and decide how to align them, but what if there are 2,000 or 3,000 tasks associated with a project? When an individual attempts to analyze multiple functions, common allocation mistakes can occur, as people may not always prioritize the most critical tasks. These individuals are unable to process this level of information and require additional help that may be beyond the capabilities of typical software. This is why AI can be beneficial.

AI empowers project managers to make informed strategic decisions and proactively address risks by automating routine tasks, delivering actionable insights from data analytics, and facilitating real-time communication.

CHALLENGES PEOPLE FACE IN RESOURCE ALLOCATION

There are prevalent challenges that people face when allocating resources for a project. Fixed assignments of resources at the start of projects often cannot be adapted when unexpected issues or changes arise. This creates inefficiencies and requires manual replanning, which is time-consuming and prone to error. (Svensson & Dollerup)

Regardless of how skilled the project manager is, they can still be disrupted by changing circumstances, bias and subjectivity, the complexity of the project itself, and limited information and feedback.

CHANGING CIRCUMSTANCES

No project proceeds exactly as planned. Unexpected changes can occur regardless of the project manager's efforts. For example, a key worker may be absent due to illness, rendering those resources unavailable for several days. Obtaining essential equipment, tools, or supplies may also prove problematic. Additionally, time estimates may be overly optimistic for the team's tasks. Such changes often result in delays and increased costs. Artificial intelligence assists by monitoring real-time conditions and forecasting potential future changes. Although AI predictions are not infallible, they enable project teams to anticipate resource constraints and prepare accordingly.

BIAS AND SUBJECTIVITY

Human decisions occasionally reflect personal opinions. Internal politics, favoritism, and peer relationships within organizations may influence resource assignments. When properly trained, AI operates free of such biases. It relies solely on data-driven analysis, providing recommendations directly to project managers and teams. By reducing bias and subjectivity, AI supports objective decision-making and proposes solutions grounded exclusively in factual evidence.

COMPLEXITY OF THE PROJECT

Projects commonly contain unknown elements that challenge both teams and leadership. Gaps in knowledge can influence how resources are allocated and utilized. Project managers, teams, and executives often invest significant effort in identifying and addressing these gaps. Furthermore, projects may change direction unexpectedly. When this occurs, many original objectives and discussions become obsolete as the project adapts to new circumstances. For instance, economic downturns can strain organizational finances, triggering layoffs that reduce workforce availability and delay projects. Additionally, supply chain disruptions may hinder access to necessary products and services. Regardless of the complexity's origin, unforeseen issues are likely to arise during project execution.

LIMITED INFORMATION AND FEEDBACK

Since their formalization in the mid-20th century, projects have consistently faced challenges due to the limited feedback on information. Project success depends heavily on the timely and accurate flow of information. The effectiveness of this flow varies by organization, team, and the level of commitment to updating data, with outcomes influenced by the internal culture.

Incorporating AI into information feedback mechanisms substantially improves communication. AI enables project managers and team members to access real-time updates rather than waiting for scheduled meetings. Furthermore, AI can proactively send alerts, such as early-morning notifications via text, signaling when aspects of the project deviate from the plan. This early-warning capability enables the prompt identification of issues, allowing for faster decision-making and corrective action to mitigate negative impacts.

Efficient information gathering and feedback also enhance the effectiveness of project management. Recognizing when a resource is ahead of schedule permits redeployment to other tasks. Similarly, identifying areas where resources struggle allows leadership to offer targeted support, including training and mentoring.

These challenges highlight the need for AI-enabled systems in resource allocation, tool management, and feedback processes. Utilizing AI enables teams to monitor project details in real-time, reducing reliance on assumptions and enhancing informed decision-making.

TYPES OF AI TO USE IN PROJECT MANAGEMENT

Artificial intelligence is used to enable machines to act in ways that appear intelligent. Because AI can quickly process a large amount of information and data, it allows the system to make projections and recommendations to the project manager as early as possible, enabling resolutions to be formed. As a foundational approach, the project managers would not spend their time following an activity list as much as anticipating where gaps are occurring and working to alleviate and remove those bottlenecks from the processes.

TYPES OF AI USED EVERY DAY

For streaming recommendations, the AI system provides suggestions, highlighting problem areas and potential solutions for the project at its current stage. Because AI is analyzing historical data in real-time evaluations of the project, it can also predict where the project may go wrong in the future if no changes are made. Streaming recommendations from the AI system are beneficial, as they enable the project manager and team to be aware of potential problems that may occur, even if those issues are not immediately apparent.

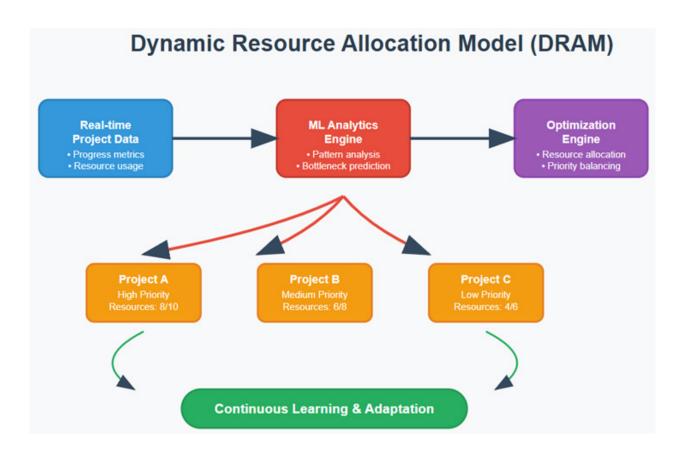
For example, Goldman Sachs Research forecasts that data center occupancy (utilization) globally is projected to rise from approximately 85% in 2023 to over 95% by late 2026, driven partly by AI workloads. However, this is a market-wide projection. (Goldman, 2025) AWS also reduced operational costs by about 20% in cloud computing by embedding predictive analytics in EC2 resource management. It is possible to track all these KPIs and measure the ROI of AI implementations by enterprises. (Ayyadapu, 2024)

"The implementation of AI resulted in a 63.6% decrease of schedule deviations, together with a 27.9% rise of resource utilization, combined with a 72.2% reduction of cost-estimation errors, leading to the potential transformation of organizational project control from reactive to proactive control." (Zaheer, M. 2025)

Navigating the plan

Because AI can analyze current information and predict future projects, it can also plan and provide ideas on the best possible way to navigate a project to completion on time and within budget. These recommendations are based on what the AI system identifies as areas for optimization and are adjusted according to past performance history.

Smart assistance


Smart assistance is not a new concept to the average consumer, as most individuals have experience with Siri or Alexa playing music, setting reminders, or setting alarms. The intelligent assistant, which works through speech recognition technology, allows leadership to guide the project verbally. Smart assistance can streamline specific aspects of the planning process, while also accelerating the creation of an integration or project plan. Because the intelligent assistant is also typically controlled by voice, it allows adjustments to happen instantly, for all to see and follow.

Because AI is already embedded in so much technology and equipment, one can see how these areas can be highly beneficial to the project at minimal cost, while also supporting the overall project management infrastructure.

AI MODEL FOR RESOURCE SCHEDULING IN PROJECT MANAGEMENT

Several different models can support AI resource scheduling for projects. The following section will describe and discuss five AI models as examples.

DYNAMIC RESOURCE ALLOCATION MODEL (DRAM)

DRAM uses a machine learning algorithm to analyze project progress and the translation rates for changing project requirements. The goal of automatically redistributing resources across multiple projects in real-time can benefit the project or program manager in consistently achieving the highest performance engagement.

DRAM shifts its focus away from traditional resource planning, instead utilizing predictive analysis to achieve its goals and recommendations. By analyzing patterns and project delays, the system identifies overallocated resources, anticipates bottlenecks or work stoppages, and provides early warning signs to the project manager. What would happen if one could receive a 5% efficiency in resources compared to 15% to 20%?

Challenges and Solutions for the Dynamic Resource Allocation Model (DRAM)

Challenges:

One of the primary challenges with DRAM is its ability to function effectively under rapidly shifting workloads. In many organizations, project demands can spike unexpectedly, while other areas slow down, creating an imbalance that leaves some resources underutilized while others are overextended. This volatility makes it difficult for DRAM to maintain smooth operations, especially when the model lacks real-time responsiveness.

Another difficulty arises when DRAM tries to reconcile competing priorities across projects. Without adaptive mechanisms, the system can unintentionally overcommit resources to high-visibility tasks while sidelining equally important but less urgent work. This uneven distribution reduces efficiency and increases the risk of project delays, especially in dynamic environments such as IT or construction.

DRAM may struggle when projects experience rapid fluctuations in workload, resulting in an uneven distribution of resources and bottlenecks. This challenge can be complicated for several reasons, including communication limitations or numerous changes that are not communicated clearly to the entire project team.

Solutions:

To overcome these challenges, organizations can integrate real-time monitoring and adaptive algorithms into DRAM. These enhancements enable the model to continuously rebalance assignments as conditions change, reallocating resources from low-demand areas to high-priority tasks. This dynamic adjustment ensures that workloads are more effectively balanced, improving responsiveness and minimizing bottlenecks.

By integrating real-time monitoring and adaptive algorithms, DRAM can automatically rebalance assignments, ensuring that resources flow smoothly to the most urgent or value-driven tasks. Additionally, increased communication of changes and next steps to the team through wireframes and Kanban boards ensures everything is clear and transparent.

INTELLIGENT CONSTRAINT SATISFACTION MODEL (ICSM)

ICSM utilizes advanced constraint programming, combined with neural networks, to resolve complex resource scheduling problems. Many of these constraints are examined, identified, and optimized based on the workers' skills and availability. Additionally, the system will assess budget limitations and project sequences, which may vary in achieving the goals and objectives.

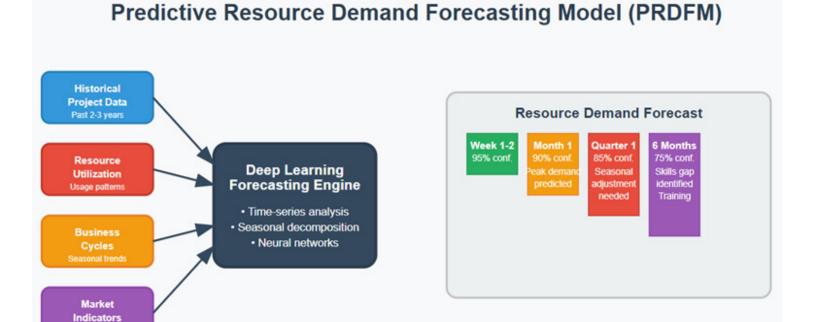
The model uses fuzzy logic to manage uncertainty and ambiguity in resource needs, allowing adjustments and flexibility in real-world scenarios. It also provides strong scheduling options that help meet business goals. This model highlights the diverse skill sets that many resources possess, enabling them to develop various scenarios and provide recommendations to leadership quickly. It presents options to improve resource utilization and enhance skill flexibility in demand.

Challenges and Solutions for the Intelligent Constraint Satisfaction Model (ICSM)

Challenges:

ICSM often encounters difficulties when navigating highly complex project environments where numerous constraints overlap. For instance, projects may involve budgetary limits, scheduling conflicts, skill availability, and regulatory requirements all at once. When these constraints clash, ICSM may struggle to generate viable solutions that satisfy all requirements simultaneously, leaving project teams with stalled decision-making.

Additionally, ICSM can become inefficient when forced to consider every possible scenario. The computational load increases significantly as the number of constraints grows, resulting in slower outputs and making it more challenging to identify the most practical trade-offs. This complexity often leaves managers frustrated, as the model may provide theoretically accurate answers that are impractical for real-world execution.


ICSM often encounters difficulties when handling complex project rules, where multiple constraints overlap and create conflicting priorities. Working with project constraints requires attention to the proper order and mitigating some limitations early to minimize their impact.

Solutions:

By applying advanced optimization techniques, ICSM can restructure its approach to handle overlapping rules. Prioritizing constraints and ranking them by criticality enables the model to resolve conflicts more efficiently, producing workable trade-offs without overwhelming the decision-making process. This adjustment provides project teams with practical and timely solutions, while ensuring compliance with essential requirements.

Using advanced optimization techniques, ICSM can restructure constraint hierarchies, rank priorities, and propose feasible trade-offs, allowing teams to meet requirements without sacrificing key project outcomes. Creating a constraints list and ordering them every week makes it clear which ones to work on next. In addition, constraints are workable if everyone is following the same ideas and taking the same steps.

PREDICTIVE RESOURCE DEMAND FORECASTING MODEL (PRDFM)

PRDFM utilizes time series analysis to offer project managers recommendations and future scheduling insights. This enables the project manager to use resource planning in conjunction with procurement decisions, based on predictive workloads, business cycles, and patterns. This model integrates historical data from previous projects with resource planning, forward prediction, and analysis of resource usage and demand.

PRDFM incorporates market demands and forecasts for various resource types, skills, and categories to support organizational fulfillment and growth. Incorporating PRDFM external data helps introduce industry-specific scenarios as well as the sequence of patterns that companies and industries typically experience.

Challenges and Solutions for Predictive Resource Demand Forecasting Model (PRDFM)

Challenges:

One of the challenges for PRDFM lies in managing rapidly fluctuating workloads. Not all projects maintain the same pace. Some activities increase at various times during the project or at specific times of the year. These changes alter the utilization of resources, leading to uneven strain and creating imbalances, conflicts, and friction on and off the project.

Because it prioritizes change quickly, PRDFM makes resource allocation difficult when moving people on and off the project. This can lead to reduced productivity and an increase in schedule slippage.

Solution:

Integrating machine learning and real-time data feeds allows PRDFM to adapt its predictions as conditions evolve. By continuously updating demand outlooks, the model becomes more resilient to change and better aligned with organizational realities. This proactive adjustment ensures managers have reliable forecasts that support accurate staffing, budgeting, and material planning.

Forecasting and predictability help anticipate what future resources and reserves one will need. Using ongoing model training that connects to procurement strategies, operating constraints, and plans helps keep PRDFM aligned with the organization's goals, objectives, and future state.

UPCOMING WEBINAR!

AI IN ACTION: HOW TO SUCCESSFULLY IMPLEMENT AI ACROSS YOUR ORGANIZATION

FEBRUARY 6, 2026
For more information and to register, go to www.themathisgroup.com/webinars

MULTI-AGENT RESOURCE NEGOTIATION MODEL (MARNM)

Multi-Agent Resource Negotiation Model

An intelligent AI-powered system that optimizes resource scheduling and allocation across complex projects through autonomous agent negotiation

Multi-Agent System

Autonomous agents represent different resources and stakeholders, negotiating optimal allocations

Resource Negotiation

Intelligent bargaining protocols balance competing demands and constraints in real-time

Dynamic Scheduling

Adaptive algorithms
continuously optimize schedules
based on changing project
conditions

Conflict Resolution

Automated resolution of resource conflicts through priority-based decision making

The MARNM model utilizes autonomous AI agents to monitor various projects, departments, or business units for resource allocation, employing automated bidding systems and conflict resolution mechanisms. Each of the following units represents an intelligent agent that supports the organization's resource needs.

The AI agents utilize game theory principles and reinforcement learning to develop negotiation strategies and support global organizational objectives. This satisfied system incorporates metrics for evaluating the best vendor and pricing architecture, as well as supporting organizational oversight. The system improves over time, learning from previous historical projects how to apply resources more effectively with less conflict and greater efficiency.

Challenges and Solutions for Multi-Agent Resource Negotiation Model (MARNM)

Challenges:

A significant challenge for MARNM occurs when multiple autonomous agents compete for the same limited resources. These agents, designed to advocate for their assigned tasks or teams, may push for maximum allocation without regard for broader organizational efficiency. Such competition can lead to negotiation deadlocks, where neither party is willing to compromise, resulting in delayed resource deployment and slowed overall project progress.

A related issue arises in scaling the negotiation process. As the number of agents increases, the system must manage a much larger volume of interactions and proposals. Without clear protocols, negotiations can become chaotic, inefficient, and prone to bias toward more aggressive or higher-priority agents, resulting in smaller or lower-visibility tasks being underserved.

Solutions:

Establishing well-defined negotiation protocols and incorporating priority rules into the model enables agents to reach agreements more efficiently and equitably. By guiding agents with structured frameworks for compromise, MARNM balances fairness and efficiency, ensuring that resources are distributed where they create the most value without excessive delays.

Establishing clear negotiation protocols and introducing priority rules enables MARNM agents to reach an agreement more efficiently, striking a balance between fairness and resource allocation. Priority needs to be given to both specific project components and skilled workers. Understanding the proper order and the best resource to complete the work helps in every situation.

UPCOMING WEBINAR!

AI AS YOUR PROJECT LEADERSHIP ASSISTANT: QUICK DRAFTS, RAPID BRAINSTORMING, AND EFFICIENT CONTENT CREATION

MAY 22, 2026

For more information and to register, go to www.themathisgroup.com/webinars

ADAPTIVE SKILLS-BASED RESOURCE MATCHING MODEL (ASRMM)

ADAPTIVE SKILLS-BASED RESOURCE MATCHING MODEL (ASRMM)

Resource Planning for Project Management

ASRMM utilizes natural language processing and integrates with intelligent project requirement filtering. This model continues to update performance history while keeping updates to the profiles throughout project outcomes.

This model goes beyond typical skill matching and learning capabilities. The AI system must continue to stay updated with the reskilling that is happening quickly throughout the employee ranks. Unless the organization is actively working and providing a mechanism for workers to stay updated on their skill set, AI may overlook that resource. When the system is set correctly, it enables users to compare what they need now with what they will need in the future, providing recommendations for specific skill gaps that AI has identified in the industry and organization.

Challenges and Solutions for Adaptive Skills-Based Resource Matching Model (ASRMM)

Challenges:

ASRMM often struggles when employee skills are misaligned with tasks, when employee profiles are incomplete, or when roles evolve faster than the model updates. If workers' skills are not properly tracked, the model may assign tasks based on inaccurate capability assumptions. This misalignment results in mismatched assignments where employees either lack the expertise to perform effectively or are overqualified, leading to wasted potential and reduced morale.

Another difficulty lies in the pace of skill evolution. In modern workplaces, new tools, technologies, and methods emerge quickly, while older skills become obsolete. If ASRMM does not update regularly, it risks assigning tasks using outdated skill frameworks, which reduces efficiency and can put organizations at a competitive disadvantage. The goal of helping AI be more accurate and selecting the right resource requires precise information on the project and the people involved.

Solutions:

Connecting ASRMM to continuous skills-tracking systems and incorporating feedback loops ensures that employee profiles remain current. This approach enables the model to adapt to evolving competencies and organizational needs, leading to more precise task assignments and improved alignment between individual expertise and project requirements.

By linking the model to continuous skills tracking systems and integrating feedback loops, ASRMM can keep its matching logic current, ensuring that the right expertise is applied to the right task at the right time. As expertise grows, these new skills are applied to the latest projects.

Many more AI models can be used for resource scheduling and evaluation. The specific model must connect to the type of project and industry. However, the purpose behind examining these models is to understand how others are utilizing AI models to enhance success and mitigate bottlenecks.

CONCLUSION

As project environments bring in more data-driven projects, organizations will notice an increasing challenge in using traditional resource allocation methods to meet the changing demands, complexity, and speed of decision-making. Using AI in resource allocation enables project managers and teams to take a transformative leap forward in keeping pace with changing constraints and predictive analysis of future schedules in real-time, while suggesting adjustments for both current and future needs.

Because AI can perform predictive analysis and make recommendations or give early warnings to leadership, many of the surprises that harm projects and cost organizations significant amounts of money will be mitigated, while increasing success.

The future of AI lies in its ability to run projects, not in fighting AI, but in looking at it as a tool to support human decision-making. Building the connection between the two and ensuring technology works in conjunction with humans, embracing technology as a partner and tool for success.

REFERENCES

Annam, N. (2024). AI-driven solutions for IT resource management. *International Journal of Engineering and Management Research*.

Ayyadapu, A. (2024). Cutting costs with AI in Amazon Web Services (AWS) in real time. https://www.linkedin.com/pulse/cutting-costs-ai-amazon-web-services-aws-real-time-ayyadapu-nntnc/

Dong, X., & Qiu, W. (2024). A method for managing scientific research project resource conflicts and predicting risks using BP neural networks. *Scientific Reports*, 14(1), 9238. https://doi.org/10.1038/s41598-024-59911-w

Goldman Sachs. (2025, February 34). AI to drive 165% increase in data center power demand by 2030. https://www.goldmansachs.com/insights/articles/ai-to-drive-165-increase-in-data-center-power-demand-by-2030

Haque, E., & Fahad, F. M. (2025). Artificial intelligence in project management: Enhancing decision-making, efficiency, and risk management. *Strategic Data Management and Innovation*.

Nabeel, M. Z. (2024). AI-enhanced project management systems for optimizing resource allocation and risk mitigation. *Asian Journal of Multidisciplinary Research*. https://doi.org/10.55662/ajmrr.2024.5502

Svensson, A., & Dollerup, E. (2020). Improving project resource management in project-based organisations: A case study (Dissertation). Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-49749

SuperAGI. (2025). AI vs. traditional project management: A comparative analysis of scheduling efficiency in 2025. Retrieved from https://superagi.com/ai-vs-traditional-project-management-a-comparative-analysis-of-scheduling-efficiency-in-2025/

Zaheer, M., Khan, A., Abdullah, H., & Khan, W. (2025). Integrating artificial intelligence techniques for predictive project scheduling, dynamic resource allocation, and accurate cost estimation. *International Journal for Social Sciences*. <a href="https://www.researchgate.net/publication/396309170_Integrating_Artificial_Intelligence_Techniques_for_Predictive_Project_Scheduling_Dynamic_Resource_Allocation_and_Accurate_Cost_Estimation_Intelligence_Intellig

Providing quality, customized training and consulting services that inspire, educate, and equip organizations to be better tomorrow than they are today.

DR. KEITH MATHIS, PMP, PMI-ACP, CSP-SM, CSP-PO WANDA MATHIS, M.ED. PMI-ACP

PROJECT MANAGEMENT TRAINING

OVER 60 PROJECT MANAGEMENT COURSES REGISTERED WITH PMI

PRESENTATIONS THAT EDUCATE, MOTIVATE, AND INSPIRE

Since 1993, The Mathis Group has been helping organizations change worker productivity and behavior.

PROJECT MANAGEMENT
MARKETING
MOTIVATION
ORGANIZATIONAL BEHAVIOR
LEADERSHIP
CUSTOMER SERVICE

COMPANY MANDATE

The Mathis Group provides training and consulting that will impact the organization and individual while maintaining an outstanding reputation for success and integrity.

VALUES STATEMENT

Every person has worth and should be treated with respect.

AREAS OF EXPERTISE

- Curriculum Design
- Project Management
- Organizational Behavior and Development
 - Management

- Agile Project Management
 - Strategic Planning
 - Executive Coaching
 - Performance
 - Team Building

- Emotional Intelligence
 - Leadership
 - Customer Service
- Supervisory Leadership
- Hybrid Project Management

9515 N Spring Valley Dr Pleasant Hope, MO 65725 800-224-3731 417-759-9110 (voice/fax)

www.themathisgroup.com

keith@themathisgroup.com wanda@themathisgroup.com DUNS Number: 007722098 CAGE: 3C1N9 GSA Contractor Number: GS-02F-0010V

